Convexly Independent Subsets of the Minkowski Sum of Planar Point Sets

نویسندگان

  • Friedrich Eisenbrand
  • János Pach
  • Thomas Rothvoß
  • Nir B. Sopher
چکیده

Let P and Q be finite sets of points in the plane. In this note we consider the largest cardinality of a subset of the Minkowski sum S ⊆ P ⊕ Q which consist of convexly independent points. We show that, if |P | = m and |Q| = n then |S| = O(m2/3n2/3 + m + n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tight Lower Bound for Convexly Independent Subsets of the Minkowski Sums of Planar Point Sets

Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function M(m, n), which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets P and Q with |P | = m and |Q| = n. They proved that M(m, n) = O(m2/3n2/3+m+n), and asked whether a superlinear lower bound exists for M(n, n). In this note, we show that their upper bound is the best possib...

متن کامل

Large Convexly Independent Subsets of Minkowski Sums

Let Ed(n) be the maximum number of pairs that can be selected from a set of n points in Rd such that the midpoints of these pairs are convexly independent. We show that E2(n) > Ω(n √ log n), which answers a question of Eisenbrand, Pach, Rothvoß, and Sopher (2008) on large convexly independent subsets in Minkowski sums of finite planar sets, as well as a question of Halman, Onn, and Rothblum (20...

متن کامل

A Note on Convexly Independent Subsets of an Infinite Set of Points

We consider convexly independent subsets of a given infinite set of points in the plane (Euclidean space) and evaluate the cardinality of such subsets. It is demonstrated, in particular, that situations are essentially different for countable and uncountable point sets. 2000 Mathematics Subject Classification: 52A10, 52A20.

متن کامل

A Brunn-minkowski Inequality for the Integer Lattice

A close discrete analog of the classical Brunn-Minkowksi inequality that holds for finite subsets of the integer lattice is obtained. This is applied to obtain strong new lower bounds for the cardinality of the sum of two finite sets, one of which has full dimension, and, in fact, a method for computing the exact lower bound in this situation, given the dimension of the lattice and the cardinal...

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008